Deep Reinforcement Learning-Based DQN Agent Algorithm for Visual Object Tracking in a Virtual Environmental Simulation

Author:

Park Jin-Hyeok,Farkhodov Khurshedjon,Lee Suk-Hwan,Kwon Ki-Ryong

Abstract

The complexity of object tracking models among hardware applications has become a more in-demand task to accomplish with multifunctional algorithm skills in various indeterminable environment tracking conditions. Experimenting with the virtual realistic simulator brings new dependencies and requirements, which may cause problems while experimenting with runtime processing. The goal of this paper is to present an object tracking framework that differs from the most advanced tracking models by experimenting with virtual environment simulation (Aerial Informatics and Robotics Simulation—AirSim, City Environ) using one of the Deep Reinforcement Learning Models named as Deep Q-Learning algorithms. Our proposed network examines the environment using a deep reinforcement learning model to regulate activities in the virtual simulation environment and utilizes sequential pictures from the realistic VCE (Virtual City Environ) model as inputs. Subsequently, the deep reinforcement network model was pretrained using multiple sequential training image sets and fine-tuned for adaptability during runtime tracking. The experimental results were outstanding in terms of speed and accuracy. Moreover, we were unable to identify any results that could be compared to the state-of-the-art methods that use deep network-based trackers in runtime simulation platforms, since this testing experiment was conducted on the two public datasets VisDrone2019 and OTB-100, and achieved better performance among compared conventional methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3