Variable Rate Independently Recurrent Neural Network (IndRNN) for Action Recognition

Author:

Gao Yanbo,Li Chuankun,Li ShuaiORCID,Cai Xun,Ye Mao,Yuan Hui

Abstract

Recurrent neural networks (RNNs) have been widely used to solve sequence problems due to their capability of modeling temporal dependency. Despite the rich varieties of RNN models proposed in the literature, the problem of different sampling rates or performing speeds in sequence tasks has not been explicitly considered in the network and the corresponding training and testing processes. This paper addresses the problem of different sampling rates or performing speeds in the skeleton-based action recognition with RNNs. Specifically, the recently proposed independently recurrent neural network (IndRNN) is used as the RNN network due to its well-behaved and easily regulated gradient backpropagation through time. Samples are extracted with variable sampling rates and thus of different lengths, then processed by IndRNN with different time steps. In order to accommodate the differences in terms of gradients introduced by the backpropagation through time under variable time steps, a learning rate adjustment method is further proposed in the paper. Different learning rate adjustment factors are obtained for different layers by analyzing the gradient behavior under IndRNN. Experiments on skeleton-based action recognition are conducted to verify its effectiveness, and the results show that the proposed variable rate IndRNN network can significantly improve the performance over the RNN models under the conventional training strategies.

Funder

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3