ANN-Based Inverse Goal-Oriented Design Method for Targeted Final Properties of Materials

Author:

Ahmad Waqas,Wang Guoxin,Yan Yan

Abstract

Designing materials for targeted materials properties is the key to tackle the demands for personalized consumer products. The deficiency in the existing linear and nonlinear correlation methods attributed to simplifying assumptions and idealizations, nondeterministic simulations, and limited experimental data due to heavy computational time and cost, necessitates a design method that provides sufficient confidence to designers in decision making. To address this requirement, we propose, in this paper, an inverse goal-oriented materials design method supported by the design space exploration framework (DSEF). Keeping in view the accuracy and precision in the prediction confidence of machine learning-based methods, we developed an Artificial Neural Network based prediction model that supports DSEF. The proposed method for materials design can help designers to (1) explore PSPP spaces starting from end property requirements, (2) adjust the errors being propagated in the PSPP chain as well as in the predictions made by the model, and (3) timely adjust model parameters of the prediction model for accurate predictions. The efficacy of the method is illustrated for the hot stamping process to produce structural components from ultrahigh-strength steels (UHSS). The proposed method and prediction model are generic and applicable to any sequential manufacturing process to realize an end product.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special Issue: Smart Resilient Manufacturing;Applied Sciences;2022-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3