A Gravity-Compensated Upper-Limb Exoskeleton for Functional Rehabilitation of the Shoulder Complex

Author:

Buccelli StefanoORCID,Tessari FedericoORCID,Fanin Fausto,De Guglielmo Luca,Capitta Gianluca,Piezzo Chiara,Bruschi Agnese,Van Son Frank,Scarpetta Silvia,Succi Antonio,Rossi Paolo,Maludrottu Stefano,Barresi GiacintoORCID,Creatini Ilaria,Taglione Elisa,Laffranchi Matteo,De Michieli Lorenzo

Abstract

In the last decade, several exoskeletons for shoulder rehabilitation have been presented in the literature. Most of these devices focus on the shoulder complex and limit the normal mobility of the rest of the body, forcing the patient into a fixed standing or sitting position. Nevertheless, this severely limits the range of activities that can potentially be simulated during the rehabilitation, preventing the execution of occupational therapy which involves the execution of tasks based on activities of daily living (ADLs). These tasks involve different muscular groups and whole-body movements, such as, e.g., picking up objects from the ground. To enable whole-body functional rehabilitation, the challenge is to shift the paradigm of robotic rehabilitation towards machines that can enable wide workspaces and high mobility. In this perspective, here we present Float: an upper-limb exoskeleton designed to promote and accelerate the motor and functional recovery of the shoulder joint complex following post-traumatic or post-surgical injuries. Indeed, Float allows the patient to move freely in a very large workspace. The key component that enables this is a passive polyarticulated arm which supports the total exoskeleton weight and allows the patient to move freely in space, empowering rehabilitation through a deeper interaction with the surrounding environment. A characterization of the reachable workspace of both the exoskeleton and the polyarticulated passive arm is presented. These results support the conclusion that a patient wearing Float can perform a wide variety of ADLs without bearing its weight.

Funder

Istituto Nazionale per l'Assicurazione Contro gli Infortuni sul Lavoro

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3