A Current Sharing State Estimation Method of Redundant Switched-Mode Power Supply Based on LSTM Neural Network

Author:

He PengORCID,Zhou QuanORCID,Bai Libing,Xie Songlin,Zhang Weijing

Abstract

Redundant Switched-mode Power supplies (SMPSs) are commonly used to improve electronic systems’ reliability, and accurate estimation of the current sharing state is significant for evaluating the system’s health. Currently, the current sharing state estimation is mainly realized by using current sensors to detect each branch’s current, and the deployment and maintenance costs are high. In this paper, a method for power supply current sharing state estimation based on LSTM recurrent neural network is proposed. By taking advantage of subtle differences in the inherent spectral characteristics of SMPSs, this method only needs to detect the voltage ripple at the switching frequency of the load terminal to estimate the output current of each power supply branch. The verification experiment on the three-power redundant experimental platform shows that the estimation error is less than 10%. The method has the characteristics of simple structure, non-invasion, convenient deployment and maintenance, so it has high application and promotion value.

Funder

Research on Hardware Reliability and Remaining Useful Life Prediction of Oil and Gas Pipeline Control System

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3