Enrichment in a Fish Polyculture: Does it Affect Fish Behaviour and Development of Only One Species or Both?

Author:

Thomas MarielleORCID,Reynaud Jean-Gabriel,Ledoré Yannick,Pasquet AlainORCID,Lecocq ThomasORCID

Abstract

Physical enrichment of structures has been used for the last decades in aquaculture to improve fish production and welfare. Until now, this enrichment has been practiced in fish monoculture but not in fish polyculture. In this study, we developed a polyculture of two freshwater species (pikeperch and sterlet) in recirculated systems (tank of 2.4 m3) with or without physical structures for enrichment. Two types of structures were used: a cover plank on a part of the tank decreasing the light intensity and vertical pipes modifying the water flow. The experiment was conducted in triplicate for a three-month period with juvenile fishes (143 ± 41 g and 27.3 ± 2.2 cm for pikeperch and 133 ± 21 g and 32.8 ± 1.6 cm for sterlet). Behavioural (space occupation and abnormal behaviours) and morphological (total length, final weight, Fulton condition factor, coefficient of variation of the final weight, percentage of biomass gain and specific growth rate) traits were measured. The pikeperch changed their space occupation and showed a preference for low light areas. Sterlet also changed their space occupation: they did not use the cover and occurred mainly in the part of the tank without enrichment. There was no difference for the frequency of abnormal behaviours for pikeperch and sterlet between the two sets (with or without enrichment). There was no statistical difference between the two sets for all the morphological and growth parameters no matter the species and the rearing modality.

Funder

National Research Institue for Agriculture, Food and Environment

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3