Prediction of Self-Healing of Engineered Cementitious Composite Using Machine Learning Approaches

Author:

Chen Guangwei,Tang WaichingORCID,Chen ShuoORCID,Wang Shanyong,Cui Hongzhi

Abstract

Engineered cementitious composite (ECC) is a unique material, which can significantly contribute to self-healing based on ongoing hydration. However, it is difficult to model and predict the self-healing performance of ECC. Although different machine learning (ML) algorithms have been utilized to predict several properties of concrete, the application of ML on self-healing prediction is considerably rare. This paper aims to provide a comparative analysis on the performance of various machine learning models in predicting the self-healing capability of ECC. These models include four individual methods, linear regression (LR), back-propagation neural network (BPNN), classification and regression tree (CART), and support vector regression (SVR). To improve prediction accuracy, three ensemble methods, namely bagging, AdaBoost, and stacking, were also studied. A series of experimental works on the self-healing performance of ECC samples was conducted, and the results were used to develop and compare the accuracy among the ML models. The comparison results showed that the Stack_LR model had the best predictive performance, showing the highest coefficient of determination (R2), the lowest root-mean-squared error (RMSE), and the smallest prediction error (MAE). Among all individual models studies, the BPNN model performed the best in terms of the RMSE and R2, while SVR performed the best in terms of the MAE. Furthermore, SVR had the smallest prediction error (MAE) for crack widths less than 60 μm or greater than 100 μm, while CART had the smallest prediction error (MAE) for crack widths between 60 μm and 100 μm. The study concluded that the individual and ensemble methods can be used to predict the self-healing of ECC. Ensemble models were able to improve the accuracy of prediction compared to the individual model used as their base learner, i.e., a 2.3% to 4.9% reduction in MAE. However, selecting an appropriate individual and ensemble method is critical. To improve the performance accuracy, researchers should employ different ensemble methods to compare their effectiveness with different ML models.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3