Abstract
The purpose of this study was to investigate the radiation attenuation effect due to reflection and refraction that occurs when radiation passes through the composite material through simulation. The gamma-ray shielding ability of composites with different structures, such as layered composite, fibrous composite, and particle-added composites, was compared. For the layered composites, regardless of the thickness, the gamma-ray attenuation effect due to the structure of the layered composite could not be seen. The simulated attenuation coefficient was found to be different than the theoretical value, which increased with the content of inorganic materials. Assuming that the cesium ions absorbed on the nonwoven fabric are located in the center of the nonwoven fabric and the radioactive material absorbent is used in an appropriate amount, it is expected that more than 50% of gamma rays emitted from radioactive cesium can be shielded. If the nonwoven composites have such a shielding ability, it is expected that after adsorbing 137Cs, the intensity of gamma rays due to the adsorbed radioactive cesium can be partially attenuated, thereby contributing to radioactive waste treatment.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献