Analysis of Shear Constitutive Models of the Slip Zone Soil Based on Various Statistical Damage Distributions

Author:

Luo YinfengORCID,Zou Zongxing,Li Changdong,Duan Haojie,Thaw Nang Mon Mon,Zhang Bocheng,Ding Bingdong,Zhang Junrong

Abstract

The shear constitutive model of the slip zone soil can be used to quantitatively describe the relationship between shear stress and shear displacement, which is of great significance for the analysis of deformation mechanism and stability evaluation of landslides. The conventional shear constitutive models were usually proposed based on statistical damage theory with the Weibull distribution function, which is widely used in the field of rock material. However, there are great differences in the structure and mechanical properties of soil and rock; therefore, the suitability of the damage distribution functions for the slip zone soil needs to be further investigated. In this study, eight distribution functions are introduced to describe the damage evolution process of the slip zone soil and applied to two groups of shear stress–shear displacement curves (named shear curves) with different softening characteristics, i.e., strong softening type and weak softening type. The results show that: (1) the applicability of the various damage distribution functions to the two softening types of shear curves is obviously different; (2) the commonly used Weibull distribution is only suitable for the weak softening shear curves; (3) the shear constitutive models based on Gamma, Exponential, and Logistic distributions are the best three models for the strong softening curve; the shear constitutive models based on Gamma, Weibull, and Exponential distributions are the best three models for the weak softening curve; (4) Gamma distribution function is the optimal model in both strong softening and weak softening types of shear curves, and the parameters of the function have clear physical meaning in the shear constitutive model. In general, the Gamma distribution function can more objectively reflect the whole shear damage evolution process of the slip zone soil than other distribution functions.

Funder

National Natural Science Foundation of China

Chongqing Geological Disaster Prevention and Control Center of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3