Linear and Nonlinear Performance Analysis of Hydrodynamic Journal Bearings with Different Geometries

Author:

Viana Carlos Alberto Alves,Alves Diogo Stuani,Machado Tiago Henrique

Abstract

In rotor dynamics, a traditional way of representing the dynamics of hydrodynamic bearings is using stiffness/damping coefficients. It is thus necessary to carry out a linearization of hydrodynamic forces around the shaft’s equilibrium position. However, hydrodynamic bearings have highly nonlinear nature, depending on operating conditions. Therefore, this paper discusses the applicability of these linear/nonlinear approaches using a computational model of the rotating system, where the finite element method is used for rotor modelling and the finite volume method for bearing calculation. The main goal is to investigate the boundaries for linear approximation of the hydrodynamic forces present in lobed hydrodynamic bearings, with the system operating under high loading conditions. Several numerical simulations were performed varying preload parameter and rotating speed. A comparison of the system’s responses, in time domain (shaft orbits) and frequency domain (full spectrum), is made for linear and nonlinear models. Results showed that trilobed bearings are more susceptible to nonlinearities, even in situations of smaller vibration amplitudes, while elliptical bearings are sensitive only under larger vibration amplitudes. These analyses are of great importance for mapping the influence of nonlinearities in different types of lobed hydrodynamic bearings with fixed geometry, varying the preload parameter to verify the influence on the system’s dynamic response. This study is important and serves as the basis for cases of monitoring and fault diagnosis (in the field of structural health monitoring) since it is crucial to distinguish what would be a fault signature or a standard nonlinear effect created by the use of hydrodynamic bearings.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Analysis of Elliptical Bearings;Pinkus;Trans. ASME,1956

2. Solution of Reynolds Equation for Finite Journal Bearings;Pinkus;Trans. ASME,1958

3. Analysis and Characteristics of the Three-Lobe Bearing

4. Theory of Hydrodynamic Lubrication;Pinkus,1961

5. A Calculation Method and Data for the Dynamic Coefficients of Oil-Lubricated Journal Bearings https://dyrobes.com/wp-content/uploads/2015/09/A-Calculation-Method_Oil-Lubricated_ASME-1982_linked.pdf

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3