Mechanical Performance of Curved Link-Slab of Simply Supported Bridge Beam

Author:

Zhuang Yizhou,Luo Silv,Easa Said M.ORCID,Zhang Meng,Wang ChengquanORCID

Abstract

This paper proposes a curved link-slab (CLS) structure, simplified into a hingeless arch model, to address the current cracking phenomenon of CLS concrete. The stress formula of the hingeless arch under various loads is derived based on the classical mechanic’s method. Based on an actual bridge example, the mechanical properties of CLS are analyzed under different loads and load combinations. The results show that: (1) the CLS stress is significantly lower than that of the flat link-slab structure (FLS), (2) its stress values are less than the concrete tensile limit, and (3) the CLS can effectively solve the concrete cracking phenomenon on the link-slab. The rationality of the stress formula derived from the simplified model of the hingeless arch is verified using the finite element method (FEM). The parametric sensitivity analysis shows that variation of the reinforcement ratio of the CLS has a limited impact on it. Considering both the concrete tensile and compressive limit, the thickness of the CLS should be 15 cm to 20 cm, and its design span should be about 5% to 7.5% of the main beam length.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference18 articles.

1. Jointless Bridges;Chen,2019

2. Status of Segmental Bridge Construction in Europe

3. Early damage and prevention of continuous expansion joint on reinforced concrete bridge deck;Yao;J. Ningbo Univ. (Sci. Technol. Ed.),2005

4. Analysis of hollow slab bridge diseases and remedial measures for continuous structure of bridge deck;Su;Technol. Highw. Transp.,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3