Geo-Accumulation Index of Manganese in Soils Due to Flooding in Boac and Mogpog Rivers, Marinduque, Philippines with Mining Disaster Exposure

Author:

Monjardin Cris Edward F.ORCID,Senoro Delia B.ORCID,Magbanlac Jeffersen James M.ORCID,de Jesus Kevin Lawrence M.,Tabelin Carlito B.ORCID,Natal Pablito M.

Abstract

This paper presents the effects of flooding on the accumulation of manganese (Mn) in soils within proximity of the Boac and Mogpog rivers in Marinduque of The Philippines. Marinduque, an island province in the Philippines, experienced two catastrophic tailings storage facility (TSF) failures in the 1990s that released sulfide-rich tailings into the two major rivers. The Philippines experiences 21–23 typhoons every year, 11 of which pass thru Marinduque that causing inundation of floodplain areas in the province. A flood hazard map developed using LiDAR DEM was utilized for the Boac and Mogpog rivers for an accurate representation of flooding events. A portable X-ray fluorescence spectrometer (pXRF) and a Hannah multi-parameter device were used for the on-site analyses of Mn concentration and water physico-chemical properties, respectively. Spatial grid mapping with zonal statistics was employed for a comprehensive analysis of all the data collected and processed. Correlation analysis was carried out on Mn concentrations in soil and surface water, electrical conductivity (EC), total dissolved solids (TDS), pH, temperature, curve number (CN), and flood heights. The curve number indicates the runoff response characteristic of the Mogpog-Boac River basin. The results show that 40% of the total floodplain area of Boac and Mogpog were subjected to high hazards with flood heights above 1.5 m. The Mn content of soils had a statistically significant moderate positive correlation with flood height (r = 0.458) and a moderate negative correlation with pH (r = −0.438). This condition suggested that more extensive flooding promotes Mn contamination of floodplain soils in the two rivers, the source of which includes the mobilization of Mn-bearing silt, sediments, and mine drainage from the abandoned mine pits and TSFs. There is also a strong negative correlation between pH and Mn concentrations in surface water, a relationship attributed to the solubilization of Mn-bearing precipitates based on geochemical modeling results. Using Muller’s geo-accumulation index, 77.5% of the total floodplain of the two rivers was identified as “moderately contaminated” with an average Mn soil content of 3.4% by weight (34,000 mg/kg). The Mn contamination map of floodplain soils in the Mogpog and Boac rivers described in this study could guide relevant regional, national, and local government agencies in planning appropriate intervention, mitigation, remediation, and rehabilitation strategies to limit human exposure to highly contaminated areas.

Funder

Department of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference71 articles.

1. The Deadliest Natural Disasters in the Philippineshttps://newsinfo.inquirer.net/507589/the-deadliest-natural-disasters-in-the-philippines

2. PhilAtlas Marinduquehttps://www.philatlas.com/luzon/mimaropa/marinduque.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3