You Only Hear Once: A YOLO-like Algorithm for Audio Segmentation and Sound Event Detection

Author:

Venkatesh SatvikORCID,Moffat DavidORCID,Miranda Eduardo ReckORCID

Abstract

Audio segmentation and sound event detection are crucial topics in machine listening that aim to detect acoustic classes and their respective boundaries. It is useful for audio-content analysis, speech recognition, audio-indexing, and music information retrieval. In recent years, most research articles adopt segmentation-by-classification. This technique divides audio into small frames and individually performs classification on these frames. In this paper, we present a novel approach called You Only Hear Once (YOHO), which is inspired by the YOLO algorithm popularly adopted in Computer Vision. We convert the detection of acoustic boundaries into a regression problem instead of frame-based classification. This is done by having separate output neurons to detect the presence of an audio class and predict its start and end points. The relative improvement for F-measure of YOHO, compared to the state-of-the-art Convolutional Recurrent Neural Network, ranged from 1% to 6% across multiple datasets for audio segmentation and sound event detection. As the output of YOHO is more end-to-end and has fewer neurons to predict, the speed of inference is at least 6 times faster than segmentation-by-classification. In addition, as this approach predicts acoustic boundaries directly, the post-processing and smoothing is about 7 times faster.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference58 articles.

1. Audio segmentation of broadcast news in the Albayzin-2010 evaluation: overview, results, and discussion

2. Task 4: Large-Scale Weakly Supervised Sound Event Detection for Smart Cars http://dcase.community/challenge2017/task-large-scale-sound-event-detection

3. Towards the automatic classification of avian flight calls for bioacoustic monitoring;Salamon;PLoS ONE,2016

4. A Deep Learning Approach to Intelligent Drum Mixing With the Wave-U-Net

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3