Self-Attentive Moving Average for Time Series Prediction

Author:

Su Yaxi,Cui Chaoran,Qu Hao

Abstract

Time series prediction has been studied for decades due to its potential in a wide range of applications. As one of the most popular technical indicators, moving average summarizes the overall changing patterns over a past period and is frequently used to predict the future trend of time series. However, traditional moving average indicators are calculated by averaging the time series data with equal or predefined weights, and ignore the subtle difference in the importance of different time steps. Moreover, unchanged data weights will be applied across different time series, regardless of the differences in their inherent characteristics. In addition, the interaction between different dimensions of different indicators is ignored when using the moving averages of different scales to predict future trends. In this paper, we propose a learning-based moving average indicator, called the self-attentive moving average (SAMA). After encoding the input signals of time series based on recurrent neural networks, we introduce the self-attention mechanism to adaptively determine the data weights at different time steps for calculating the moving average. Furthermore, we use multiple self-attention heads to model the SAMA indicators of different scales, and finally combine them through a bilinear fusion network for time series prediction. Extensive experiments on two real-world datasets demonstrate the effectiveness of our approach. The data and codes of our work have been released.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3