A Smart-Mutual Decentralized System for Long-Term Care

Author:

Chou Hsien-MingORCID

Abstract

Existing caretakers of long-term care are assigned constrainedly and randomly to taking care of older people, which could lead to issues of shortage of manpower and poor human quality, especially the proportion of older people increases year after year to let long-term care become more and more important. In addition, due to different backgrounds, inadequate caregivers may cause older people to suffer from spiritual alienation under the current system. Most of the existing studies present a centralized architecture, but even if technology elements are incorporated, such as cloud center services or expert systems, it is still impossible to solve the above-mentioned challenges. This study moves past the centralized architecture and attempts to use the decentralized architecture with Artificial Intelligence and Blockchain technology to refine the model of providing comprehensive care for older people. Using the proposed mapping mutual clustering algorithm in this study, the positions of caregivers and older people can be changed at any time based on the four main background elements: risk level, physiology, medical record, and demography. In addition, this study uses the proposed long-term care decentralized architecture algorithm to solve the stability of care records with transparency to achieve the effect of continuous tracking. Based on previous records, it can also dynamically change the new matching mode. The main contribution of this research is the proposal of an innovative solution to the problem of mental alienation, insufficient manpower, and the privacy issue. In addition, this study evaluates the proposed method through practical experiments. The corporation features have been offered and evaluated with user perceptions by a one-sample t-test; the proposed algorithm to the research model also has been compared with not putting it into the model through ANOVA analysis to get that all hypotheses are supported. The results reveal a high level of accuracy of the proposed mutual algorithm forecasting and positive user perceptions from the post-study questionnaire. As an emerging research topic, this study undoubtedly provides an important research basis for scholars and experts who are interested in continued related research in the future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3