Reliability Analysis of Pyrotechnic Igniter for Hydrogen-Oxygen Rocket Engine with Low Temperature Combustion Instability Failure Mode

Author:

Niu LeiORCID,Liu Yang,Wang Jingcheng,Tu Hongmao,Dong Haiping,Yan Nan

Abstract

To evaluate the functional reliability of the pyrotechnic igniter in the failure mode of unstable combustion at low temperature, a reliability and reliability sensitivity analysis method based on the combination of an interior ballistic model and Kriging reliability method is proposed. Through the deterministic interior ballistic simulation, the failure mode of low temperature unstable combustion of the pyrotechnic igniter is examined, while the random variables are introduced to establish the ignition nonlinear implicit function of the pyrotechnic igniter. The ignition display function of the pyrotechnic igniter is established by the Kriging model, which avoids the repeated calculation of true limit state function values. This study provides an efficient approach to evaluate the ignition reliability of the pyrotechnic igniter and compared with the traditional Monte Carlo method to verify the accuracy of the results. Finally, reliability-based sensitivity indices are presented to quantify the significance of random parameters. It is shown that the influence of the uncertainties can be precisely described, and the diameter of the nozzle plays a dominant role in ignition reliability. Additionally, ignition experiments of nozzles with different diameters were performed to verify the result of sensitivity. This can further support the detailed design of the pyrotechnic igniter.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3