Multi-Timescale Control of Variable-Speed Wind Turbine for Inertia Provision

Author:

Xu ZixiaoORCID,Qi YangORCID,Li WeilinORCID,Yang YonghengORCID

Abstract

The increasing deployment of power converters has led to a significant reduction in the power system inertia and consequently resulted in frequency stability issues. To improve the robustness of the grid against frequency disturbances, it is becoming more expected in many countries that renewable energy generation, such as wind turbine power systems, should provide equivalent inertia support to the power system. This can be achieved through advanced control of power converters, in addition to adding extra energy storage devices, e.g., batteries. In wind turbine systems, although the ancillary service of inertia provision can be realized by coupling the rotor speed with the grid frequency, the rotor speed recovery process affects the inertia response if the controller is not properly designed or well-tuned. To address this issue, in this paper, we propose a multi-timescale control strategy for a doubly fed induction generator (DFIG) wind turbine system. Synthetic inertia control and speed recovery control are simultaneously incorporated into the controller of the rotor-side converter, whereas their dynamics are decoupled under different timescales to avoid control conflict. Extensive simulation results are provided, which validate the efficacy of the proposed inertia emulation scheme.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3