Differential Expression of MicroRNAs in Dark-Cutting Meat from Beef Carcasses

Author:

Riggs Penny K.ORCID,Therrien Dustin A.,Vaughn Robert N.,Rotenberry Marissa L.,Davis Brian W.ORCID,Herring Andy D.ORCID,Riley David G.,Cross H. Russell

Abstract

“Dark-cutting” meat in beef carcasses can result from conditions such as long-term stress and depleted glycogen stores, but some aspects of the physiological mechanisms that cause dark-cutting phenotypes remain poorly understood. Certain responses to stress factors in fully developed tissues are known to be regulated by specific microRNAs. We investigated microRNA expression in Longissimus lumborum biopsies from carcasses derived from a contemporary group of 78 steers from which a high incidence of dark-cutting meat occurred. Our objective was to identify any potential microRNA signatures that reflect the impact of environmental factors and stresses on genetic signaling networks and result in dark-cutting beef (also known as dark, firm, and dry, or DFD) in some animals. MicroRNA expression was quantified by Illumina NextSeq small RNA sequencing. When RNA extracts from DFD muscle biopsy samples were compared with normal, non-DFD (NON) samples, 29 differentially expressed microRNAs were identified in which expression was at least 20% different in the DFD samples (DFD/NON fold ratio ≤0.8 or ≥1.2). When correction for multiple testing was applied, a single microRNA bta-miR-2422 was identified at a false discovery probability (FDR) of 5.4%. If FDR was relaxed to 30%, additional microRNAs were differentially expressed (bta-miR-10174-5p, bta-miR-1260b, bta-miR-144, bta-miR-142-5p, bta-miR-2285at, bta-miR-2285e, bta-miR-3613a). These microRNAs may play a role in regulating aspects of stress responses that ultimately result in dark-cutting beef carcasses.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3