Morphological Changes in Betulin Particles as a Result of Polymorphic Transformations, and Formation of Co-Crystals under Heating

Author:

Myz Svetlana A.1,Politov Anatoly A.1,Kuznetsova Svetlana A.2ORCID,Shakhtshneider Tatyana P.1ORCID

Affiliation:

1. Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze Str., 18, 630090 Novosibirsk, Russia

2. Institute of Chemistry and Chemical Technology, FRC KSC SB RAS, Akademgorodok, 50/24, 660036 Krasnoyarsk, Russia

Abstract

Changes in the morphology of betulin crystals during heating at selected temperatures corresponding to polymorphic transformations were investigated. It was shown that the prismatic crystals of starting betulin form III were converted into needles at 120 °C after water removal, followed by the III→II polymorphic transformation. During further heating up to 180 °C, the whiskers of betulin form I were grown. Experiments on betulin heating in the presence of dicarboxylic acids, adipic or suberic showed that the morphological changes can serve as a test for the formation of cocrystals. According to morphological changes, the formation of cocrystals of betulin with adipic acid under heating was identified. The interaction of adipic acid vapor with the surface of betulin crystals was suggested. In contrast, morphological changes in the mixture of betulin and suberic acid under heating provided only the evidence of polymorphic transformations of the components. The results on cocrystal formation by heating were compared with the preparation of cocrystals by the liquid-assistance grinding method. Despite the fact that polymorphic forms with a high surface area were formed when betulin was heated, dissolution studies showed that the starting betulin polymorph III exhibited the highest dissolution rate in comparison with betulin polymorphs obtained under heating.

Funder

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Institute of Chemistry and Chemical Technology SB RAS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3