Settling of Road-Deposited Sediment: Influence of Particle Density, Shape, Low Temperatures, and Deicing Salt

Author:

Rommel Steffen H.ORCID,Gelhardt LauraORCID,Welker Antje,Helmreich BrigitteORCID

Abstract

Separation of particulate matter (PM) is the most important process to achieve a reduction of contaminants present in road runoff. To further improve knowledge about influencing factors on the settling of road-deposited sediment (RDS), samples from three sites were collected. Since particle size distribution (PSD) has the strongest effect on settling, the samples were sieved to achieve comparable PSDs so that the effects of particle density, shape, fluid temperature, and deicing salt concentration on settling could be assessed using settling experiments. Based on the experimental data, a previously proposed model that describes the settling of PM was further developed and validated. In addition, RDS samples were compared to a standard mineral material, which is currently in use to evaluate treatment efficiency of stormwater quality improvement devices. The main finding was that besides PSD, particle density is the most important influencing factor. Particle shape was thoroughly described but showed no significant improvement of the prediction of the settled mass. Temperature showed an effect on PM settling; deicing salts were negligible. The proposed models can sufficiently predict the settling of RDS in settling column experiments under varying boundary conditions and are easily applicable.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3