The Anchorage of Bone Cells onto an Yttria-Stabilized Zirconia Surface with Mild Nano-Micro Curved Profiles

Author:

Staehlke SusanneORCID,Springer Armin,Freitag Thomas,Brief Jakob,Nebe J. BarbaraORCID

Abstract

The high biocompatibility, good mechanical properties, and perfect esthetics of ceramic dental materials motivate investigation into their suitability as an endosseous implant. Osseointegration at the interface between bone and implant surface, which is a criterion for dental implant success, is dependent on surface chemistry and topography. We found out earlier that osteoblasts on sharp-edged micro-topographies revealed an impaired cell phenotype and function and the cells attempted to phagocytize these spiky elevations in vitro. Therefore, micro-structured implants used in dental surgery should avoid any spiky topography on their surface. The sandblasted, acid-etched, and heat-treated yttria-stabilized zirconia (cer.face®14) surface was characterized by scanning electron microscopy and energy dispersive X-ray. In vitro studies with human MG-63 osteoblasts focused on cell attachment and intracellular stress level. The cer.face 14 surface featured a landscape with nano-micro hills that was most sinusoidal-shaped. The mildly curved profile proved to be a suitable material for cell anchorage. MG-63 cells on cer.face 14 showed a very low reactive oxygen species (ROS) generation similar to that on the extracellular matrix protein collagen I (Col). Intracellular adenosine triphosphate (ATP) levels were comparable to Col. Ceramic cer.face 14, with its sinusoidal-shaped surface structure, facilitates cell anchorage and prevents cell stress.

Publisher

MDPI AG

Subject

General Dentistry

Reference37 articles.

1. Zahnimplantate Zunehmend Erste Wahlhttps://idw-online.de/de/news707107

2. Cellular responses of osteoblast-like cells to 17 elemental metals

3. Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity

4. Dental implants-associated release of titanium particles: A systematic review

5. Rem Tene, Verba Sequenturhttps://www.dimagazin-aktuell.de/marktplatz/kollegentipps/story/rem-tene-verba-sequentur_7845.html

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3