How to Inspect and Measure Data Quality about Scientific Publications: Use Case of Wikipedia and CRIS Databases

Author:

Azeroual OtmaneORCID,Lewoniewski WłodzimierzORCID

Abstract

The quality assurance of publication data in collaborative knowledge bases and in current research information systems (CRIS) becomes more and more relevant by the use of freely available spatial information in different application scenarios. When integrating this data into CRIS, it is necessary to be able to recognize and assess their quality. Only then is it possible to compile a result from the available data that fulfills its purpose for the user, namely to deliver reliable data and information. This paper discussed the quality problems of source metadata in Wikipedia and CRIS. Based on real data from over 40 million Wikipedia articles in various languages, we performed preliminary quality analysis of the metadata of scientific publications using a data quality tool. So far, no data quality measurements have been programmed with Python to assess the quality of metadata from scientific publications in Wikipedia and CRIS. With this in mind, we programmed the methods and algorithms as code, but presented it in the form of pseudocode in this paper to measure the quality related to objective data quality dimensions such as completeness, correctness, consistency, and timeliness. This was prepared as a macro service so that the users can use the measurement results with the program code to make a statement about their scientific publications metadata so that the management can rely on high-quality data when making decisions.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3