Abstract
In this paper, we study and investigate the spread of the coronavirus disease 2019 (COVID-19) in Iraq and Egypt by using compartmental, logistic regression, and Gaussian models. We developed a generalized SEIR model for the spread of COVID-19, taking into account mildly and symptomatically infected individuals. The logistic and Gaussian models were utilized to forecast and predict the numbers of confirmed cases in both countries. We estimated the parameters that best fit the incidence data. The results provide discouraging forecasts for Iraq from 22 February to 8 October 2020 and for Egypt from 15 February to 8 October 2020. To provide a forecast of the spread of COVID-19 in Iraq, we present various simulation scenarios for the expected peak and its timing using Gaussian and logistic regression models, where the predicted cases showed a reasonable agreement with the officially reported cases. We apply our compartmental model with a time-periodic transmission rate to predict the possible start of the second wave of the COVID-19 epidemic in Egypt and the possible control measures. Our sensitivity analyses of the basic reproduction number allow us to conclude that the most effective way to prevent COVID-19 cases is by decreasing the transmission rate. The findings of this study could therefore assist Iraqi and Egyptian officials to intervene with the appropriate safety measures to cope with the increase of COVID-19 cases.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献