Flexural Properties of Thin-Walled Specimens with Square Hollow Sections 3D Printed from ABS Reinforced with Aramid Fibers

Author:

Bochnia Jerzy1ORCID,Kozior Tomasz1ORCID,Musialek Mateusz1

Affiliation:

1. Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland

Abstract

This article studies the flexural behavior of thin-walled specimens with square hollow sections fabricated using fused deposition modeling (FDM). The specimens were 3D printed from an ABS filament reinforced with aramid fibers. Four wall thicknesses were analyzed. The strength data were collected during three-point flexural tests. There are visible, clear differences in the flexural properties between the X- or Y-oriented specimens and those printed in the Z direction, and they vary up to 70%. It was also found that the flexural strength was dependent on the G-codes controlling the print head’s motion, path, and position. For specimens with a thickness up to 1.4 mm, the infill pattern was linear, whereas 1.8 mm and 2 mm specimens needed a stitch, which had some negative effects on the strength properties.

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D Print of Clamping Tools Used in Electric Motor Manufacturing;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3