P Starvation in Roses Leads to Strongly Genotype-Dependent Induction of P-Transporter Genes during Black Spot Leaf Disease

Author:

Domes Helena Sophia,Neu Enzo,Linde MarcusORCID,Debener ThomasORCID

Abstract

Phosphorous starvation in plants has been reported to have contrasting effects on the interaction with pathogens in different plant pathogen systems and plant species. Both increases and decreases in susceptibility have been observed in numerous reports. Here, we analysed black spot infection and the leaf expression of two plant phosphate transporters and one defence marker gene in roses after phosphorous starvation. We varied three factors: phosphate starvation versus full supply of phosphorous, black spot infection vs. mock inoculation, and different susceptible and resistant progeny of a biparental rose population. Black spot susceptibility or resistance was not significantly changed upon phosphate starvation in either compatible or incompatible interactions. The expression of phosphate transporters was strongly induced upon starvation, but in some genotypes, expression was altered by black spot interaction as well. The marker for pathogenic interactions was exclusively induced by interaction with black spot, but the expression was altered by a combination of phosphate starvation and interaction with the fungus in some genotypes. In summary, phosphate starvation has clear effects on the gene expression of phosphate transporters in rose leaves, and the interaction with a hemibiotrophic leaf pathogen is strongly genotype dependent.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3