Fun30 and Rtt109 Mediate Epigenetic Regulation of the DNA Damage Response Pathway in C. albicans

Author:

Maurya Prashant Kumar,Garai Pramita,Goel Kaveri,Bhatt Himanshu,Dutta Anindita,Goyal Aarti,Dewasthale Sakshi,Gupta MeghnaORCID,Haokip Dominic ThangminlenORCID,Barik Sanju,Muthuswami RohiniORCID

Abstract

Fun30, an ATP-dependent chromatin remodeler from S. cerevisiae, is known to mediate both regulation of gene expression as well as DNA damage response/repair. The Fun30 from C. albicans has not yet been elucidated. We show that C. albicans Fun30 is functionally homologous to both S. cerevisiae Fun30 and human SMARCAD1. Further, C. albicans Fun30 can mediate double-strand break end resection as well as regulate gene expression. This protein regulates transcription of RTT109, TEL1, MEC1, and SNF2-genes that encode for proteins involved in DNA damage response and repair pathways. The regulation mediated by C. albicans Fun30 is dependent on its ATPase activity. The expression of FUN30, in turn, is regulated by histone H3K56 acetylation catalyzed by Rtt109 and encoded by RTT109. The RTT109Hz/FUN30Hz mutant strain shows sensitivity to oxidative stress and resistance to MMS as compared to the wild-type strain. Quantitative PCR showed that the sensitivity to oxidative stress results from downregulation of MEC1, RAD9, MRC1, and RAD5 expression; ChIP experiments showed that Fun30 but not H3K56ac regulates the expression of these genes in response to oxidative stress. In contrast, upon treatment with MMS, the expression of RAD9 is upregulated, which is modulated by both Fun30 and H3K56 acetylation. Thus, Fun30 and H3K56 acetylation mediate the response to genotoxic agents in C. albicans by regulating the expression of DNA damage response and repair pathway genes.

Funder

Department of Biotechnology

University Grants Commission

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3