Optimization of Dissolved Silica Removal from Reverse Osmosis Concentrate by Gedaniella flavovirens for Enhanced Water Recovery

Author:

Gao Han1,Sato Shinya2ORCID,Kodamatani Hitoshi3ORCID,Fujioka Takahiro4ORCID,Ishida Kenneth P.5ORCID,Ikehata Keisuke1ORCID

Affiliation:

1. Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA

2. Department of Marine Science and Technology, Fukui Prefectural University, Fukui 917-0003, Japan

3. Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-8544, Japan

4. Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan

5. Orange County Water District, Fountain Valley, CA 92708, USA

Abstract

Photobiological treatment of reverse osmosis concentrate (ROC) using brackish diatoms is a green and sustainable technology that can enhance water recovery by removing dissolved silica from ROC while producing beneficial biomass. This study aimed to determine the optimum conditions for the photobiological treatment of ROC obtained from a full-scale advanced water purification facility using Gedaniella flavovirens Psetr3. While light color presented minor impacts on the silica uptake rate, the impact of color intensity was significant. The uptake rate improved from 28 ± 1 to 48 ± 7 mg/L/day by increasing photosynthetically active radiation (PAR) from 50 to 310 µmol m−2 s−1. Increasing the PAR further did not improve the performance. The optimum temperature was around 23–30 °C. While the silica uptake was slower at 10 °C, G. flavovirens Psetr3 was unable to survive at 40 °C. Experiments using sunlight as a light source verified the impact of temperature on the silica uptake and the detrimental effect of ultraviolet radiation on this diatom. The sunlight-based treatment effectively removed N-nitrosodimethylamine. The results of this study are being used in subsequent pilot-scale investigations and full-scale technoeconomic analysis and will contribute to the further development of this sustainable water technology.

Funder

United States Bureau of Reclamation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3