A Comparative Analysis of Advanced Machine Learning Techniques for River Streamflow Time-Series Forecasting

Author:

Abdoulhalik Antoifi1,Ahmed Ashraf A.1

Affiliation:

1. Department of Civil and Environmental Engineering, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK

Abstract

This study examines the contribution of rainfall data (RF) in improving the streamflow-forecasting accuracy of advanced machine learning (ML) models in the Syr Darya River Basin. Different sets of scenarios included rainfall data from different weather stations located in various geographical locations with respect to the flow monitoring station. Long short-term memory (LSTM)-based models were used to examine the contribution of rainfall data on streamflow-forecasting performance by investigating five scenarios whereby RF data from different weather stations were incorporated depending on their geographical positions. Specifically, the All-RF scenario included all rainfall data collected at 11 stations; Upstream-RF (Up-RF) and Downstream-RF (Down-RF) included only the rainfall data measured upstream and downstream of the streamflow-measuring station; Pearson-RF (P-RF) only included the rainfall data exhibiting the highest level of correlation with the streamflow data, and the Flow-only (FO) scenario included streamflow data. The evaluation metrics used to quantitively assess the performance of the models included the RMSE, MAE, and the coefficient of determination, R2. Both ML models performed best in the FO scenario, which shows that the diversity of input features (hydrological and meteorological data) did not improve the predictive accuracy regardless of the positions of the weather stations. The results show that the P-RF scenarios yielded better prediction accuracy compared to all the other scenarios including rainfall data, which suggests that only rainfall data upstream of the flow monitoring station tend to make a positive contribution to the model’s forecasting performance. The findings evidence the suitability of simple monolayer LSTM-based networks with only streamflow data as input features for high-performance and budget-wise river flow forecast applications while minimizing data processing time.

Funder

Horizon Europe

Publisher

MDPI AG

Reference34 articles.

1. Will climate change exacerbate water stress in Central Asia?;Siegfried;Clim. Chang.,2012

2. Machine learning method is an alternative for the hydrological model in an alpine catchment in the Tianshan region, Central Asia;Liang;J. Hydrol. Reg. Stud.,2023

3. Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data;Aizen;Ann. Glaciol.,2006

4. Ibatullin, S., Yasinsky, V., and Mironenkov, A. (2009). Impacts of Climate Change on Water Resources in Central Asia, Eurasian Development Bank. Sector Report.

5. Review article: Hydrological modeling in glacierized catchments of central Asia—Status and challenges;Chen;Hydrol. Earth Syst. Sci.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3