Compressive Strength, Permeability, and Abrasion Resistance of Pervious Concrete Incorporating Recycled Aggregate

Author:

Bai Xixuan12,Zhou Heng1,Bian Xiaoya12,Chen Xuyong12,Ren Chengqiang1

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430073, China

2. Hubei Provincial Engineering Research Center for Green Civil Engineering Materials and Structures, Wuhan 430073, China

Abstract

Extensive use of cement in the construction industry increases CO2 emissions and has a negative impact on the environment. In this work, recycled coarse aggregate (RCA) from construction and demolition wastes (C&DW) was used to fabricate sustainable pervious concrete (PC). In order to mitigate the environmental hazards of excess cement waste and to improve the engineering properties of PC, silica fume (SF) and ground granulated blast-furnace slag (GGBS) were added. The effects of SF and GGBS on the compressive strength, permeability coefficient, porosity, and abrasion resistance of recycled aggregate pervious concrete (RAPC) were investigated. The results show that the incorporation of GGBS and SF effectively improves the compressive strength of RAPC but reduces the permeability coefficient and porosity. Moreover, due to the filling effect and pozzolanic activity, the incorporation of GGBS and SF significantly enhances the abrasion resistance of RAPC. Furthermore, the relationships between the compressive strength, permeability coefficient, porosity, and abrasion resistance of RAPC are clarified. The optimum replacement is achieved when the SF content is 7%, and the GGBS content is 20%, respectively, which results in the highest compressive strength (28.9 MPa) and the lowest permeability coefficient (1.2 mm/s) at 28 days, and the lowest mass loss rate (12.1%) after the Cantabro abrasion test.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3