Evaluation of the Margin of Stability during Gait Initiation in Young Healthy Adults, Elderly Healthy Adults and Patients with Parkinson’s Disease: A Comparison of Force Plate and Markerless Motion Capture Systems

Author:

Simonet Arnaud123,Fourcade Paul23,Loete Florent4ORCID,Delafontaine Arnaud2356ORCID,Yiou Eric23ORCID

Affiliation:

1. LADAPT Loiret, Centre de Soins de Suite et de Réadaptation, 45200 Amilly, France

2. CIAMS, Université Paris-Saclay, 91405 Orsay, France

3. CIAMS, Université d’Orléans, 45067 Orléans, France

4. Laboratoire GeePs—CENTRALESUPELEC, 91190 Gif-sur-Yvette, France

5. Laboratoire d’Anatomie Fonctionnelle, Faculté des Sciences de la Motricité, Université Libre de Bruxelles, CP 619-1070 Brussels, Belgium

6. Laboratoire d’Anatomie, de Biomécanique et d’Organogenèse, Faculté de Médecine, Université Libre de Bruxelles, CP 619-1070 Brussels, Belgium

Abstract

Gait initiation (GI) is a functional task classically used in the literature to evaluate the capacity of individuals to maintain postural stability. Postural stability during GI can be evaluated through the “margin of stability” (MoS), a variable that is often computed from force plate recordings. The markerless motion capture system (MLS) is a recent innovative technology based on deep learning that has the potential to compute the MoS. This study tested the agreement between a force plate measurement system (FPS, gold standard) and an MLS to compute the MoS during GI. Healthy adults (young [YH] and elderly [EH]) and Parkinson’s disease patients (PD) performed GI series at spontaneous (SVC) and maximum velocity (MVC) on an FPS while being filmed by a MLS. Descriptive statistics revealed a significant effect of the group (YH vs. EH vs. PD) and velocity condition (SVC vs. MVC) on the MoS but failed to reveal any significant effect of the system (MLS vs. PFS) or interaction between factors. Bland–Altman plot analysis further showed that mean MoS biases were zero in all groups and velocity conditions, while the Bayes factor 01 indicated “moderate evidence” that both systems provided equivalent MoS. Trial-by-trial analysis of Bland–Altman plots, however, revealed that differences of >20% between the two systems did occur. Globally taken, these findings suggest that the two systems are similarly effective in detecting an effect of the group and velocity on the MoS. These findings may have important implications in both clinical and laboratory settings due to the ease of use of the MLS compared to the FPS.

Funder

Association Nationale de la Recherche et de la Technologie

LADAPT Loiret

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3