Field Investigation and Finite Element Analysis of Landslide-Triggering Factors of a Cut Slope Composed of Granite Residual Soil: A Case Study of Chongtou Town, Lishui City, China

Author:

Yan Tiesheng1,Xiong Jun1,Ye Longjian1,Gao Jiajun2,Xu Hui2ORCID

Affiliation:

1. Southern Zhejiang Comprehensive Engineering Surveying and Mapping Institute, Hangzhou 310030, China

2. School of Civil Engineering and Achitecture, Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract

Landslides caused by excavations and precipitation events are widespread types of slope failures in southwest Zhejiang, China, in areas with granite residual soil. Investigations of the effect of high precipitation on the hydrological response, stability, and evolutionary mechanism of cut slopes in granite soil areas are lacking. The characteristics of historical landslides in Chongtou Town in southwestern Zhejiang were summarized, and a typical slope was selected for analysis. The hydraulic and mechanical properties of the residual soil and fully weathered granite were tested, and the surface displacements on the slope were monitored. Geo-studio was utilized to establish a coupled seepage-deformation model to validate the numerical method and investigate the landslide-triggering factors of the cut slope. The results showed nearly all historical landslides in Chongtou Town were triggered by precipitation events, and the slide bodies consisted of residual soil and fully weathered granite with similar geotechnical properties. The simulated and measured horizontal displacements were in good agreement, indicating the reliability of the established model and parameters. The stability coefficient decreased with an increase in the gradient or height of the cut slope. The critical height values were 5.3 m, 5.5 m, 5.7 m, 6.0 m, and 6.3 m at slopes of 60°, 65°, 70°, 75°, and 80°, respectively. Long-term torrential rain and short-term high-intensity precipitation events are likely to trigger landslides when the precipitation event lasts longer than 26 h and 78 h, respectively. The landslide formation includes four stages: slope evolution, formation of unloading zone at slope foot, migration and loss of soil particles, and instability of the cut slope. The findings can be used to prevent and manage landslides on cut slopes in areas with granite residual soil.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3