Valorization of Human Urine with Mixed Microalgae Examined through Population Dynamics, Nutrient Removal, and Biogas Content

Author:

Ermis Hande1ORCID,Guven Gulhan Unzile2ORCID,Akca Mehmet Sadik1ORCID,Cakir Tunahan3,Altinbas Mahmut1ORCID

Affiliation:

1. Department of Environmental Engineering, Istanbul Technical University, Istanbul 34469, Turkey

2. PHI Tech Bioinformatics R&D Inc., Kocaeli 41400, Turkey

3. Department of Bioengineering, Gebze Technical University, Kocaeli 41400, Turkey

Abstract

The majority of nutrients in municipal wastewater originate from urine. However, when flush water is used, the urine is diluted and mixed with other organic household waste, losing its high-value stream content. This study investigated the effect of source-separated human urine on the population dynamics, nutrient removal, growth, and biogas content of mixed microalgae grown in 250 L raceway ponds. Overall, a maximum biomass concentration of 1847 mg/L was reached, with up to 90% nitrogen and 80% phosphorus removal efficiencies, along with 254.96 L/kg vs. biogas production. The microbial community analysis identified Chlorella sorokiniana (Chlorophyta, Trebouxiophyceae) as the species with the highest abundance, after confirmation with four different markers (16S rRNA, 18S rRNA, 23S rRNA, and tufA). Moreover, principal component analysis was applied to capture the effect of environmental factors on culture diversity. The abundance of Chlorella sorokiniana increased almost sevenfold when the culture was exposed to open systems compared to the small-scale study carried out in 1 L Erlenmeyer bottles in laboratory conditions, both grown in urine and synthetic media (BBM). In conclusion, the present study contributes to the potential to valorize urine with microalgae by showing its high biogas content, and reveals that microalgae can adapt to adverse environmental conditions by fostering their diversity.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3