Investigating Impacts of Climate Change on Runoff from the Qinhuai River by Using the SWAT Model and CMIP6 Scenarios

Author:

Sun Jinqiu,Yan Haofang,Bao ZhenxinORCID,Wang GuoqingORCID

Abstract

This paper looks at regional water security in eastern China in the context of global climate change. The response of runoff to climate change in the Qinhuai River Basin, a typical river in eastern China, was quantitatively investigated by using the Soil and Water Assessment Tool (SWAT) model and the ensemble projection of multiple general circulation models (GCMs) under three different shared socioeconomic pathways (SSPs) emission scenarios. The results show that the calibrated SWAT model is applicable to the Qinhuai River Basin and can accurately characterize the runoff process at daily and monthly scales with the Nash–Sutcliffe efficiency coefficients (NSE), correlation coefficients (R), and the Kling–Gupta efficiency (KGE) in calibration and validation periods being above 0.75 and relative errors (RE) are ±3.5%. In comparison to the baseline of 1980–2015, the mean annual precipitation in the future period (2025–2060) under the three emission scenarios of SSP1-2.6, SSP2-4.5, and SSP5-8.5 will probably increase by 5.64%, 2.60%, and 6.68% respectively. Correspondingly, the multiple-year average of daily maximum and minimum air temperatures are projected to rise by 1.6–2.1 °C and 1.4–2.0 °C, respectively, in 2025–2060. As a result of climate change, the average annual runoff will increase by 16.24%, 8.84%, and 17.96%, respectively, in the period of 2025–2060 under the three SSPs scenarios. The increase in runoff in the future will provide sufficient water supply to support socioeconomic development. However, increases in both rainfall and runoff also imply an increased risk of flooding due to climate change. Therefore, the impact of climate change on flooding in the Qinhuai River Basin should be fully considered in the planning of flood control and the basin’s development.

Funder

the National Key Research and Development Programs of China, China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3