Effects of Roughness Coefficients and Complex Hillslope Morphology on Runoff Variables under Laboratory Conditions

Author:

Meshkat Masoud,Amanian Nosratollah,Talebi AliORCID,Kiani-Harchegani MahboobehORCID,Rodrigo-Comino JesúsORCID

Abstract

The geometry of hillslopes (plan and profile) affects soil erosion under rainfall-runoff processes. This issue comprises of several factors, which must be identified and assessed if efficient control measures are to be designed. The main aim of the current research was to investigate the impact of surface Roughness Coefficients (RCs) and Complex Hillslopes (CHs) on runoff variables viz. time of generation, time of concentration, and peak discharge value. A total of 81 experiments were conducted with a rainfall intensity of 7 L min−1 on three types of soils with different RCs (i.e., low = 0.015, medium = 0.016, and high = 0.018) and CHs (i.e., profile curvature and plan shape). An inclination of 20% was used for three replications. The results indicate a significant difference (p-value ≤ 0.001) in the above-mentioned runoff variables under different RCs and CHs. Our investigation of the combined effects of RCs and CHs on the runoff variables shows that the plan and profile impacts are consistent with a variation in RC. This can implicate that at low RC, the effect of the plan shape (i.e., convergent) on runoff variables increases but at high RC, the impact of the profile curvature overcomes the plan shapes and the profile curvature’s changes become the criteria for changing the behavior of the runoff variables. The lowest mean values of runoff generation and time of concentration were obtained in the convex-convergent and the convex-divergent at 1.15 min and 2.68 min, respectively, for the soil with an RC of 0.015. The highest mean of peak discharge was obtained in the concave-divergent CH in the soil with an RC of 0.018. We conclude that these results can be useful in order to design planned soil erosion control measures where the soil roughness and slope morphology play a key role in activating runoff generation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3