Applying Biomineralization Technology to Study the Effects of Rainfall Induced Soil Erosion

Author:

Shih Dong-SinORCID,Lai Tzu-Yi,Hsu Zuo-Ming

Abstract

The rainless days and drought seasons reveal a tendency to lengthen the wet and dry period in recent years in Taiwan. In the bare riverbeds in central Taiwan, such as the Dajia and Zhuoshui rivers, fugitive dust is the common problem during the winter’s dry period with northeast monsoon. The study aims to use the biological method, Microbial-induced carbonate precipitation (MICP), to solidify the soil and implement a series of rainfall simulator experiments to reduce the Aeolian dust emission problems. Accordingly, the relationship between rainfall-induced soil erosion and its soil specimens are also discussed. The soil conducted the MICP for seven days as the curing age, and then be analyzed the degree of soil solidification under different conditions, rainfall intensity of 41 mm/h and 61 mm/h by the soil erosion experiment. The effect of soil solidification with various relative density of soils of 60%, 70%, and 80%, and hillside slopes of 5°, 10°, 20° were tested. The result indicated that, the higher the relative density of soils, the better the effect of soil solidification would be. The relative density of soils from 60% to 80% all kept the effect of soil solidification as applying to MICP. Therefore, it was important to select the curing age with the matching relative density of soils. Moreover, the most appropriate condition for the effects of soil solidification by MICP was the slopes below 10° and the curing age for seven days. The effect of soil solidification was still preserved in that with the high intensity rainfall (66 mm/h) due to the Aeolian dust emission commonly happening in the bare riverbeds with mild slopes.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3