Influence of Changes of Catchment Permeability and Frequency of Rainfall on Critical Storm Duration in an Urbanized Catchment—A Case Study, Cracow, Poland

Author:

Wałęga AndrzejORCID,Radecki-Pawlik Artur,Cupak Agnieszka,Hathaway Jon,Pukowiec Michał

Abstract

The increase of impermeable areas in a catchment is known to elevate flood risk. To adequately understand and plan for these risks, changes in the basin water cycle must be quantified as imperviousness increases, requiring the use of hydrological modeling to obtain design runoff volumes and peak flow rates. A key stage of modeling is adopting the structure of the model and estimating its parameters. Due to the fact that most impervious basins are uncontrolled, hydrological models that do not require parameter calibration are advantageous. At the same time, it should be remembered that these models are sensitive to the values of assumed parameters. The purpose of this work is to determine the effect of catchment impermeability on the flow variability in the Sudół Dominikański stream in Cracow, Poland, and assess the influence of the frequency of rainfall on values of time of concentration (here it is meant as critical storm duration). The major finding in this work is that the critical storm duration for all different scenarios of catchment imperviousness depends on the rainfall exceedance probability. In the case of rainfall probability lower than 5.0%, the critical storm duration was equal to 2 h, for higher probabilities (p ≥ 50%) it was equal to 24 h. Simulations showed that the increase of impermeable areas caused peak time abbreviation. In the case of rainfall with exceedance probability p = 1.0% and critical storm duration Dkr = 2 h, the peak time decreased about 12.5% and for impermeable areas increased from 22.01 to 44.95%.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3