Innovative IntraValvular Impedance Sensing Applied to Biological Heart Valve Prostheses: Design and In Vitro Evaluation

Author:

Gironi CamillaORCID,Cercenelli LauraORCID,Bortolani BarbaraORCID,Emiliani Nicolas,Tartarini Lorenzo,Marcelli Emanuela

Abstract

Subclinical valve thrombosis in heart valve prostheses is characterized by the progressive reduction in leaflet motion detectable with advanced imaging diagnostics. However, without routine imaging surveillance, this subclinical thrombosis may be underdiagnosed. We recently proposed the novel concept of a sensorized heart valve prosthesis based on electrical impedance measurement (IntraValvular Impedance, IVI) using miniaturized electrodes embedded in the valve structure to generate a local electric field that is altered by the cyclic movement of the leaflets. In this study, we investigated the feasibility of the novel IVI-sensing concept applied to biological heart valves (BHVs). Three proof-of-concept prototypes of sensorized BHVs were assembled with different size, geometry and positioning of the electrodes to identify the optimal IVI-measurement configuration. Each prototype was tested in vitro on a hydrodynamic heart valve assessment platform. IVI signal was closely related to the electrodes’ positioning in the valve structure and showed greater sensitivity in the prototype with small electrodes embedded in the valve commissures. The novel concept of IVI sensing is feasible on BHVs and has great potential for monitoring the valve condition after implant, allowing for early detection of subclinical valve thrombosis and timely selection of an appropriate anticoagulation therapy.

Funder

University of Bologna

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3