Fabrication of Manganese-Supported Activated Alumina Adsorbent for Defluoridation of Water: A Kinetics and Thermodynamics Study

Author:

You Kun,Li Peijie,Fu Jinxiang,Kang Ning,Gao Yujia,Cheng Xiaoxiang,Yang Yuehong,Yu Furui

Abstract

Fluoride pollution frequently occurs in many underground drinking water sources due to discrepancies in the geological environment. To address this problem, a manganese-supported activated alumina (MnOOH-supported AA) adsorbent was proposed in the present study. The adsorbent was prepared with an impregnation method, then the morphology and microstructure were systematically characterized. Further, the adsorption kinetics and thermodynamics were systematically explored through static experiments to confirm the adsorption mechanism. The results showed that MnOOH was successfully loaded on the activated alumina (AA), and irregular and convex spinous structures were formed on the surface of particles. Compared with the AA, MnOOH-supported AA exhibited a significantly higher defluoridation rate, which has been doubled. The kinetic behavior of fluoride adsorption on MnOOH-supported AA was governed by the quasi-second-order kinetics model with regression coefficients of 0.9862, 0.9978 and 0.9956, respectively. The adsorption rate was mainly ascribed to the intra-particle diffusion. Additionally, the Freundlich isotherm equation fitted the adsorption thermodynamic process reasonably well compared with the Langmuir adsorption model. Specifically, the correlation coefficients were 0.9614, 0.9383 and 0.9852 at 25 °C, 35 °C and 45 °C, respectively. The adsorption–desorption isotherm plot was similar to the Type V isotherm. The whole fluoride adsorption was a spontaneous endothermic reaction, and controlled by chemical adsorption. These results demonstrated that MnOOH-supported AA as an alternative to the conventional AA showed promising potential for defluoridation in drinking water treatment.

Funder

Major Science and Technology Program for Water Pollution Control and Ttreatment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3