An Integrated Shadow-Adjusted Snow-Aging Index for Alpine Regions

Author:

Li Haixing,Liu Jinrong,Bu Xiangxu,Feng Xuezhi,Xiao PengfengORCID

Abstract

Detecting the variations in snow cover aging over undulating alpine regions is challenging owing to the complex snow-aging process and shadow effect from steep slopes. This study proposes a novel snow-cover status index, namely shadow-adjusted snow-aging index (SASAI), portraying the integrated aging process within the Manas River Basin in northwest China. The Environment Satellites HJ-1A/B optical images and in-field measurements were used during the snow ablation and accumulation periods. The in-field measurements provide a reference for building a candidate library of snow-aging indicators. The representative aging samples for training and validation were obtained using the proposed time-gap searching method combined with the target zones established based on the altitude of snowline. An analytic hierarchy process was used to determine the snow-aging index (SAI) using multiple optimal snow-aging indicators. After correction by the extreme value optimization algorithm, the SASAI was finally corrected for the effects of shading and assessed. This study provides both a flexible algorithm that indicates the characteristics of snow aging and speculation on the causes of the aging process. The separability of the SAI/SASAI and adaptability of this algorithm on multiperiod remote sensing images further demonstrates the applicability of the SASAI to all the alpine regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3