Exploring the Dunes: The Correlations between Vegetation Cover Pattern and Morphology for Sediment Retention Assessment Using Airborne Multisensor Acquisition

Author:

Valentini Emiliana,Taramelli AndreaORCID,Cappucci Sergio,Filipponi FedericoORCID,Nguyen Xuan Alessandra

Abstract

Coastal sand dunes are highly dynamic aeolian landforms where different spatial patterns can be observed due to the complex interactions and relationships between landforms and land cover. Sediment distribution related to vegetation types is explored here on a single ridge dune system by using an airborne hyperspectral and light detection and ranging (LiDAR) remote sensing dataset. A correlation model is applied to describe the continuum of dune cover typologies, determine the class metrics from landscape ecology and the morphology parameters, and extract the relationship intensity among them. As a main result, the mixture of different vegetation types such as herbaceous, shrubs, and trees classes shows to be a key element for the sediment distribution pattern and a proxy for dune sediment retention capacity, and the anthropic fingerprints can play an even major role influencing both ecological and morphological features. The novelty of the approach is mostly based on the synergistic use of LiDAR with hyperspectral that allowed (i) the benefit from already existing processing methods to simplify the way to obtain thematic maps and coastal metrics and (ii) an improved detection of natural and anthropic landscape.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3