Prediction of Early Season Nitrogen Uptake in Maize Using High-Resolution Aerial Hyperspectral Imagery

Author:

Nigon TylerORCID,Yang CeORCID,Dias Paiao GabrielORCID,Mulla DavidORCID,Knight Joseph,Fernández FabiánORCID

Abstract

The ability to predict spatially explicit nitrogen uptake (NUP) in maize (Zea mays L.) during the early development stages provides clear value for making in-season nitrogen fertilizer applications that can improve NUP efficiency and reduce the risk of nitrogen loss to the environment. Aerial hyperspectral imaging is an attractive agronomic research tool for its ability to capture spectral data over relatively large areas, enabling its use for predicting NUP at the field scale. The overarching goal of this work was to use supervised learning regression algorithms—Lasso, support vector regression (SVR), random forest, and partial least squares regression (PLSR)—to predict early season (i.e., V6–V14) maize NUP at three experimental sites in Minnesota using high-resolution hyperspectral imagery. In addition to the spectral features offered by hyperspectral imaging, the 10th percentile Modified Chlorophyll Absorption Ratio Index Improved (MCARI2) was made available to the learning models as an auxiliary feature to assess its ability to improve NUP prediction accuracy. The trained models demonstrated robustness by maintaining satisfactory prediction accuracy across locations, pixel sizes, development stages, and a broad range of NUP values (4.8 to 182 kg ha−1). Using the four most informative spectral features in addition to the auxiliary feature, the mean absolute error (MAE) of Lasso, SVR, and PLSR models (9.4, 9.7, and 9.5 kg ha−1, respectively) was lower than that of random forest (11.2 kg ha−1). The relative MAE for the Lasso, SVR, PLSR, and random forest models was 16.5%, 17.0%, 16.6%, and 19.6%, respectively. The inclusion of the auxiliary feature not only improved overall prediction accuracy by 1.6 kg ha−1 (14%) across all models, but it also reduced the number of input features required to reach optimal performance. The variance of predicted NUP increased as the measured NUP increased (MAE of the Lasso model increased from 4.0 to 12.1 kg ha−1 for measured NUP less than 25 kg ha−1 and greater than 100 kg ha−1, respectively). The most influential spectral features were oftentimes adjacent to each other (i.e., within approximately 6 nm), indicating the importance of both spectral precision and derivative spectra around key wavelengths for explaining NUP. Finally, several challenges and opportunities are discussed regarding the use of these results in the context of improving nitrogen fertilizer management.

Funder

Minnesota Department of Agriculture

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3