Landslide Prediction Method Based on a Ground-Based Micro-Deformation Monitoring Radar

Author:

Qi Lin,Tan WeixianORCID,Huang Pingping,Xu WeiORCID,Qi Yaolong,Zhang Mingzhi

Abstract

As remote sensing methods have received a lot of attention, ground-based micro- deformation monitoring radars have been widely used in recent years due to their wide range, high accuracy, and all-day monitoring capability. On the one hand, these monitoring radars break through the limitations of traditional point monitoring equipment such as the Global Navigation Satellite System (GNSS) and fissure meters in terms of monitoring scope and ease of installation. On the other hand, the data types of these monitoring radars are more varied. Therefore, it may be difficult for the data-processing method of traditional point monitoring equipment to take all advantages of this type of radar. In this paper, based on time-series monitoring data of ground-based micro-deformation monitoring radars, three parameters—extent of change (EOC), extent of stability (EOS), and extent of mutation (EOM)—are calculated according to deformation value, coherence and deformation pixels size. Then a method for landslide prediction by combining these three parameters with the inverse velocity method is proposed. The effectiveness of this method is verified by the measured data of a landslide in Yunnan Province, China. The experimental results show that the method can correctly discern deformation areas and provide more accurate monitoring results, especially when the deformation trend changes rapidly. In summary, this method can improve the response rate and prediction accuracy in extreme cases, such as rapid deformation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference53 articles.

1. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016

2. Spatial-temporal changes and influencing factors of geologic disasters from 2005 to 2016 in China;Zhang;J. GeoInf. Sci.,2017

3. Global fatal landslide occurrence from 2004 to 2016

4. The major domestic natural disasters in 2017;Wang;Disaster Reduct. China,2018

5. Inventory of major domestic natural disasters in 2018;Liu;Disaster Reduct. China,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3