Aqueous-Phase Brown Carbon Formation from Aromatic Precursors under Sunlight Conditions

Author:

Vidović KristijanORCID,Kroflič AnaORCID,Šala MartinORCID,Grgić IrenaORCID

Abstract

At present, there are still numerous unresolved questions concerning the mechanisms of light-absorbing organic aerosol (brown carbon, BrC) formation in the atmosphere. Moreover, there is growing evidence that chemical processes in the atmospheric aqueous phase can be important. In this work, we investigate the aqueous-phase formation of BrC from 3-methylcatechol (3MC) under simulated sunlight conditions. The influence of different HNO2/NO2− concentrations on the kinetics of 3MC degradation and BrC formation was investigated. Under illumination, the degradation of 3MC is faster (k2nd(global) = 0.075 M−1·s−1) in comparison to its degradation in the dark under the same solution conditions (k2nd = 0.032 M−1·s−1). On the other hand, the yield of the main two products of the dark reaction (3-methyl-5-nitrocatechol, 3M5NC, and 3-methyl-4-nitrocatechol, 3M4NC) is low, suggesting different degradation pathways of 3MC in the sunlight. Besides the known primary reaction products with distinct absorption at 350 nm, second-generation products responsible for the absorption above 400 nm (e.g., hydroxy-3-methyl-5-nitrocatechol, 3M5NC-OH, and the oxidative cleavage products of 3M4NC) were also confirmed in the reaction mixture. The characteristic mass absorption coefficient (MAC) values were found to increase with the increase of NO2−/3MC concentration ratio (at the concentration ratio of 50, MAC is greater than 4 m2·g−1 at 350 nm) and decrease with the increasing wavelength, which is characteristic for BrC. Yet, in the dark, roughly 50% more BrC is produced at comparable solution conditions (in terms of MAC values). Our findings reveal that the aqueous-phase processing of 3MC in the presence of HNO2/NO2−, both under the sunlight and in the dark, may significantly contribute to secondary organic aerosol (SOA) light absorption.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3