Nonlinear Effects on the Precessional Instability in Magnetized Turbulence

Author:

Salhi Abdelaziz,Khlifi Amor,Cambon Claude

Abstract

By means of direct numerical simulations (DNS), we study the impact of an imposed uniform magnetic field on precessing magnetohydrodynamic homogeneous turbulence with a unit magnetic Prandtl number. The base flow which can trigger the precessional instability consists of the superposition of a solid-body rotation around the vertical ( x 3 ) axis (with rate Ω ) and a plane shear (with rate S = 2 ε Ω ) viewed in a frame rotating (with rate Ω p = ε Ω ) about an axis normal to the plane of shear and to the solid-body rotation axis and under an imposed magnetic field that aligns with the solid-body rotation axis ( B ‖ Ω ) . While rotation rate and Poincaré number are fixed, Ω = 20 and ε = 0.17 , the B intensity was varied, B = 0.1 , 0.5 , and 2.5 , so that the Elsasser number is about Λ = 0.1 , 2.5 and 62.5 , respectively. At the final computational dimensionless time, S t = 2 ε Ω t = 67 , the Rossby number Ro is about 0.1 characterizing rapidly rotating flow. It is shown that the total (kinetic + magnetic) energy ( E ) , production rate ( P ) due the basic flow and dissipation rate ( D ) occur in two main phases associated with different flow topologies: (i) an exponential growth and (ii) nonlinear saturation during which these global quantities remain almost time independent with P ∼ D . The impact of a "strong" imposed magnetic field ( B = 2.5 ) on large scale structures at the saturation stage is reflected by the formation of structures that look like filaments and there is no dominance of horizontal motion over the vertical (along the solid-rotation axis) one. The comparison between the spectra of kinetic energy E ( κ ) ( k ⊥ ) , E ( κ ) ( k ⊥ , k ‖ = 1 , 2 ) and E κ ) ( k ⊥ , k ‖ = 0 ) at the saturation stage reveals that, at large horizontal scales, the major contribution to E ( κ ) ( k ⊥ ) does not come only from the mode k ‖ = 0 but also from the k ‖ = 1 mode which is the most energetic. Only at very large horizontal scales at which E ( κ ) ( k ⊥ ) ∼ E 2 D ( κ ) ( k ⊥ ) , the flow is almost two-dimensional. In the wavenumbers range 10 ≤ k ⊥ ≤ 40 , the spectra E ( κ ) ( k ⊥ ) and E ( κ ) ( k ⊥ , k ‖ = 0 ) respectively follow the scaling k ⊥ − 2 and k ⊥ − 3 . Unlike the velocity field the magnetic field remains strongly three-dimensional for all scales since E 2 D ( m ) ( k ⊥ ) ≪ E ( m ) ( k ⊥ ) . At the saturation stage, the Alfvén ratio between kinetic and magnetic energies behaves like k ‖ − 2 for B k ‖ / ( 2 ε Ω ) < 1 .

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference73 articles.

1. Geophysical Fluid Dynamics;Pedlowsky,1987

2. Physics, Formation and Evolution of Rotating Stars;Maeder,2009

3. Zonal Jets Phenomenology, Genesis, and Physics;Galperin,2019

4. A Climatology of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft

5. Horizontal velocity structure functions in the upper troposphere and lower stratosphere: 1. Observations

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3