Modeling Land Surface Fluxes from Uncertain Rainfall: A Case Study in the Sahel with Field-Driven Stochastic Rainfields

Author:

Cappelaere BernardORCID,Feurer Denis,Vischel ThéoORCID,Ottlé CatherineORCID,Issoufou Hassane Bil-AssanouORCID,Saux-Picart Stéphane,Maïnassara IbrahimORCID,Oï Monique,Chazarin Jean-Philippe,Barral Hélène,Coudert Benoit,Demarty JérômeORCID

Abstract

In distributed land surface modeling (LSM) studies, uncertainty in the rainfields that are used to force models is a major source of error in predicted land surface response variables. This is particularly true for applications in the African Sahel region, where weak knowledge of highly time/space-variable convective rainfall in a poorly monitored region is a considerable obstacle to such developments. In this study, we used a field-based stochastic rainfield generator to analyze the propagation of the rainfall uncertainty through a distributed land surface model simulating water and energy fluxes in Sahelian ecosystems. Ensemble time/space rainfields were generated from field observations of the local AMMA-CATCH-Niger recording raingauge network. The rainfields were then used to force the SEtHyS-Savannah LSM, yielding an ensemble of time/space simulated fluxes. Through informative graphical representations and innovative diagnosis metrics, these outputs were analyzed to separate the different components of flux variability, among which was the uncertainty represented by ensemble-wise variability. Scale dependence was analyzed for each flux type in the water and energy budgets, producing a comprehensive picture of uncertainty propagation for the various flux types, with its relationship to intrinsic space/time flux variability. The study was performed over a 2530 km2 domain over six months, covering an entire monsoon season and the subsequent dry-down, using a kilometer/daily base resolution of analysis. The newly introduced dimensionless uncertainty measure, called the uncertainty coefficient, proved to be more effective in describing uncertainty patterns and relationships than a more classical measure based on variance fractions. Results show a clear scaling relationship in uncertainty coefficients between rainfall and the dependent fluxes, specific to each flux type. These results suggest a higher sensitivity to rainfall uncertainty for hydrological than for agro-ecological or meteorological applications, even though eddy fluxes do receive a substantial part of that source uncertainty.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3