Variability and Trend in Integrated Water Vapour from ERA-Interim and IGRA2 Observations over Peninsular Malaysia

Author:

Makama Ezekiel KauraORCID,Lim Hwee SanORCID

Abstract

Integrated water vapour (IWV) is the total amount of precipitable water in an atmospheric column between the Earth’s surface and space. The implication of its variability and trend on the Earth’s radiation budget and precipitation makes its monitoring on a regular basis important. ERA-Interim reanalysis (ERA) and radiosonde (RS) data from 1988 to 2018 were used to investigate variability and trend in IWV over Peninsular Malaysia. ERA performed excellently when gauged with RS. Trend analysis was performed using the non-parametric Mann–Kendall and Theil–Sen slope estimator tests. ERA and RS IWV revealed double fluctuations at the seasonal time scale, with maxima in May and November, which are the respective beginnings of the southwest monsoon (SWM) and northeast monsoon (NEM) seasons, as well as coincidental peaks of precipitation in the region. IWV decreased in a southeast–northwest orientation, with regional maximum domiciled over the southeastern tip of the region. Steep orography tended to shape intense horizontal gradients along the edges of the peninsular, with richer gradients manifesting along the western boundary during SWM, which harbours more water vapour in the peninsular. IWV trends, both at the annual and seasonal time series, were positive and statistically significant at the 95% level across the stations, except at Kota Bharu, where a nonsignificant downward trend manifested. Trends were mostly higher in the NEM, with the greatest rate being 0.20 ± 0.42 kgm−2 found at Penang. Overall, the IWV trend in Peninsular Malaysia was positive and consistent with the upward global changes in IWV reported elsewhere.

Funder

RUI

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3