Risk Mapping for the Sustainable Protection of Cultural Heritage in Extreme Changing Environments

Author:

Sardella AlessandroORCID,Palazzi ElisaORCID,von Hardenberg Jost,Del Grande Carlo,De Nuntiis PaolaORCID,Sabbioni Cristina,Bonazza AlessandraORCID

Abstract

Cultural heritage is widely recognized to be at risk due to the impact of climate change and associated hazards, such as events of heavy rain, flooding, and drought. User-driven solutions are urgently required for sustainable management and protection of monumental complexes and related collections exposed to changes of extreme climate. With this purpose, maps of risk-prone areas in Europe and in the Mediterranean Basin have been produced by an accurate selection and analysis of climate variables (daily minimum and maximum temperature—Tn and Tx, daily cumulated precipitation—RR) and climate-extreme indices (R20mm, R95pTOT, Rx5 day, CCD, Tx90p) defined by Expert Team on Climate Change Detection Indices (ETCCDI). Maps are available to users via an interactive Web GIS (Geographic Information System) tool, which provides evaluations based on historical observations (high-resolution gridded data set of daily climate over Europe—E-OBS, 25 km) and climate projections (regional climate models—RCM, ~12 km) for the near and far future, under Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios. The tool aims to support public authorities and private organizations in the decision making process to safeguard at-risk cultural heritage. In this paper, maps of risk-prone areas of heavy rain in Central Europe (by using R20mm index) are presented and discussed as example of the outputs achievable by using the Web GIS tool. The results show that major future variations are always foreseen for the 30-year period 2071–2100 under the pessimistic scenario (RCP 8.5). In general, the coastal area of the Adriatic Sea, the Northern Italy, and the Alps are foreseen to experience the highest variations in Central Europe.

Funder

Interreg

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3