Self Similar Shocks in Atmospheric Mass Loss Due to Planetary Collisions

Author:

Yalinewich AlmogORCID,Remorov Andrey

Abstract

We present a mathematical model for the propagation of the shock waves that occur during planetary collisions. Such collisions are thought to occur during the formation of terrestrial planets, and they have the potential to erode the planet’s atmosphere. We show that, under certain assumptions, this evolution of the shock wave can be determined using the methodologies of Type II self similar solutions. In such solutions, the evolution of the shock wave is determined by boundary conditions at the shock front and a singular point in the shocked region. We show how the evolution can be determined for different equations of state, allowing these results to be readily used to calculate the atmospheric mass loss from planetary cores made of different materials. We demonstrate that, as a planetary shock converges to the self similar solution, it loses information about the collision that created it, including the impact angle for oblique collisions.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The propagation of strong shocks into planetary and stellar atmospheres with graded density profiles;Monthly Notices of the Royal Astronomical Society;2021-11-25

2. Crater morphology of primordial black hole impacts;Monthly Notices of the Royal Astronomical Society: Letters;2021-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3