Fog Droplet Size Distribution and the Interaction between Fog Droplets and Fine Particles during Dense Fog in Tianjin, China

Author:

Liu Qing,Wu Bingui,Wang Zhaoyu,Hao Tianyi

Abstract

From November 2016 to January 2017, there were large-scale dense fog processes in Tianjin area on the west coast of Bohai Bay, China, even strong dense fog with visibility less than 50 m occurred. Based on the observation data of fog droplet spectrum monitor, visibility sensor, environmental particle monitoring equipment and meteorological automatic station, the characteristics of fog droplet size distribution and the interaction between the fog droplets and fine particles during dense fog events were analyzed. The results show following characteristics: (1) The average concentration of fog droplets (Na), the average liquid water content (La) and the maximum liquid water content (Lmax) in the strong dense fog process are larger than those in the dense fog. The average spectrum of fog droplet size distribution conforms to Junge distribution, and they are all broad-spectrum fog with a spectrum width of about 45 μm. The average spectrum is similar to the dense fog of heavily industrialized inland in the world. (2) The maximum of fog droplet diameter during the formation stage have a good indication for the outbreak of strong dense fog. (3) The mass concentration of PM2.5 (CPM2.5) is ranged from 121–375 μg/m3, and the interaction between fog droplets and fine particles is analyzed. During the formation, development and maturity stages, fog process can scavenge atmospheric fine particles, and the scavenging efficiency of PM2.5 is more remarkable than PM10. When CPM2.5 does not exceed 350 μg/m3, the increase in the concentration of fine particles is conducive to the rapid growth of fog droplets and the sharp drop of visibility. However, when CPM2.5 exceeds the critical value, the increase has a negative feedback effect on the development of the fog process. More investigations and cases are necessary to fully assess the mechanisms related to the dense fog events in Tianjin area and further analysis will be done.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3