Abstract
Particulate matter air pollution is widely considered as the leading environmental cause of premature mortality. However, there are substantial differences in the estimated health burden between the assessments. The aim of this work is to quantify the deaths attributable to ambient air pollution in Nordic countries applying selected assessment tools and approaches, and to identify the main disparities. We quantified and compared the estimated deaths from three health risk assessment tools and from a set of different concentration-response functions. A separate analysis was conducted for the impacts of spatial resolution of the exposure model on the estimated deaths. We found that the death rate (deaths per million) attributable to PM2.5 and O3 were the highest in Denmark and the lowest in Iceland. In the five Nordic countries, the results between the three tools ranged from 8500 to 11,400 for PM2.5 related deaths, and for ozone from 230 to 260 deaths in 2015. Substantially larger differences were found between five concentration-response functions. The shape of concentration-response functions, and applied theoretical thresholds led to substantial differences in the estimated deaths. Nordic countries are especially sensitive to theoretical thresholds due to low exposures. Sensitivity analysis demonstrated that when using spatial exposure assessment methods, high spatial resolution is necessary to avoid underestimation of exposures and health effects.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献